Explainable Planner Selection

Patrick Ferber1,2 \hspace{1cm} Jendrik Seipp1

1University of Basel, Switzerland
2Saarland University, Germany

Workshop on Explainable AI Planning

October 21, 2020
Motivation
Motivation
Motivation
SymBA*
Motivation

SymBA*

Complementary1
Motivation

SymBA*

Complementary

Symple-1
Motivation

SymBA*

Complementary1

Sympyle-1

...
Motivation

SymBA*

Complementary1

Symplyle-1
Given:

\[P = \{ \text{SymBA}^*, \text{Complementary1}, \text{Symple-1}, \ldots \} \]
\[T = 1800\text{s} \]

Portfolio Selector:

\[f : \text{Tasks} \rightarrow P \]
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

- Problem Description Graph (Pochter, Zohar, and Rosenschein, 2011)
- Abstract Structure Graph (Sievers et al., 2019)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

128x128 pixels

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

- Convolutional Neural Network (CNN)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Contributions

- Explainable techniques and understandable features
- identify important features
- investigate which planners are selected
Machine Learning Techniques

Linear Regression

\[X \cdot \text{weights} = 0 \]

Multi-Layer Perceptron

Decision Tree

Q1

Yes \rightarrow Q2

No \rightarrow \ldots

Q2

Yes \rightarrow \ldots

No \rightarrow \ldots
Training

- data set of Ferber et al. (2019)
 - tasks, runtimes
- extract features
- train **one** model per planner
- labels: time, logtime, coverage
- 10 repetitions

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Becris (Linear Regression), Knut Synstad (Decision Tree), Samuel Dion-Girardeau (brain)
Training

- data set of Ferber et al. (2019)
 - tasks, runtimes
- extract features
- train **one** model per planner
- labels: time, logtime, coverage
- 10 repetitions

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Becris (Linear Regression), Knut Synstad (Decision Tree), Samuel Dion-Girardeau (brain)
Training

- data set of Ferber et al. (2019)
 - tasks, runtimes
- extract features
- train one model per planner
- labels: time, logtime, coverage
- 10 repetitions

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Becris (Linear Regression), Knut Synstad (Decision Tree), Samuel Dion-Girardeau (brain)
Features

Feature augmentations: normalize
Performance

<table>
<thead>
<tr>
<th></th>
<th>Linear Regression</th>
<th>MLP</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>FAWCETT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary</td>
<td>78.6</td>
<td>77.2</td>
<td>82.1</td>
</tr>
<tr>
<td>logtime</td>
<td>79.3</td>
<td>79.0</td>
<td>81.5</td>
</tr>
<tr>
<td>time</td>
<td>78.6</td>
<td>81.8</td>
<td>80.5</td>
</tr>
<tr>
<td>FPDPL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary</td>
<td>87.7</td>
<td>74.3</td>
<td>72.7</td>
</tr>
<tr>
<td>logtime</td>
<td>82.5</td>
<td>84.0</td>
<td>78.5</td>
</tr>
<tr>
<td>time</td>
<td>86.5</td>
<td>86.5</td>
<td>86.5</td>
</tr>
</tbody>
</table>
Feature Importance

- requires negative preconditions
- max parameters per predicate
- mean negations per effect
- mean predicates per effect
- requires conditional effects
- requires equality
- max predicates per effect
- #types
- min predicates per effect
Planner Choices

- Delfi
- MLP
- LR
- RF
Single Decision Tree

#atoms / #objects ≤ 6.9

- true
 - #atoms ≤ 266.5
 - true: SymBA*
 - false: h2+DKS+iPDB

- false
 - median #objects per type ≤ 22.5
 - true: SymBA*
 - false: h2+OSS+LM-cut
Explainable planner selection ...

- is possible
- let’s us identify important features
- learns the right planner for a domain
- can be as simple as a single decision tree

