Incremental Search for Counterexample-Guided Cartesian Abstraction Refinement

Jendrik Seipp Samuel von Allmen Malte Helmert
University of Basel

In a Nutshell

- optimal classical planning
- A^* search + abstraction heuristic
- counterexample-guided Cartesian abstraction refinement
- bottleneck: find shortest path
- incremental search: 1000x speedup

CEGAR

compute initial abstraction
until TERMINATE():
 find shortest path in abstraction
 if there is no path:
 return unsolvable
 find flaw in path
 if there is no flaw:
 return plan
 refine abstraction for flaw
return abstraction

Example Task

Abstraction Refinement

Incremental Search

- add/remove transitions
- increase/decrease weights
- fixed set of states

Two-Step Refinement

before splitting v

Copy v

prune transitions

Increase (Frigioni et al., 2000)

- increasing weights, removing transitions
- shortest path tree
- reconnect ancestor states, mark rest dirty
- run Dijkstra on dirty states

Time for Finding Shortest Paths

Solved Tasks Over Time